
PLANNING AND IMPERATIVE
Lf*' PROGRAM SYNTHESIS:
o A DEDUCTIVE APPROACH
N
NONR Project N00014-89-K-0114

SRI Project 7433

I [11 Final Technical Report

Mrch 26, 1990

B\: Richard Waldinger, Principal Scientist
Artificial Intelligence Center

Computing and Engineering Sciences Division

Prepared for:
Office of Naval Research

800 North Quincy Street
Arlington, Virginia 22217

Attention: Dr. Alan Meyrowitz D T IC
!. ELECTE

.. APR 16 1990

ppROVED:

C. It d Perrault, rector
Artificial rIntelligence Center DISTRTBUTION STATEMENT A

Appr, ,v,. for public release;
~ Unlimited

Donald L. Nielson, Vice President and Director

Computing and Engineering Sciences Division

1ternat l,"

Contents

I Sunmary of Work Accomplished 1

1.1 Background 1

1.2 Deductive Tableaux

1.3 Powerful Deduction Ilules 2

1.4 Interactive Implementation 3

1.5 Applicative vs. Imperative Programs 3

1.6 The Trouble with Situational Logic 3

1.7 Fluent, Theory 4

1.8 Planning and Database Applications 5

1.9 The Frame Problem. 5

1.10 The Logical Basis for Computer Programming 6

1.11 Current Status and Publications 6

2 Publications 7

3 References 8

Accession For

NTIS CRA&I

DTIC TAB
Unannounced C1
Justification

By
Distribution/

Availability Code5 1 A I I ' 1 " A p e r A . M e y r o w i t z
ONR/Code 1133 DOsttSA eil ,.or
TELECON 4/16/90 VGt,'G(- .Q,

1 Summary of Work Accomplished

U.'nder the Support of this contract, SRI International (SRI) has extended a deductive
approach to the synthesis of programs to the derivation of imlperative plrograms and
plans. An interactive implementation of the technique has been developed. The
approach has also been applied to the derivation of programs for database updating.
A book describing the deductive approach has been completed.

1.1 Background

For several years we have been working (largely under ONR an(l NSF support) on the
automatic synth(sis of computer programs. This is the task of deriving a program to
meet the conditions of a given specification. We have settled on a deductive approach
[M\W80] to this problem, according to which programming is regarded as a task in
deduction, or theorem proving. To construct a program, we prove the existence of
a data object (e.g., a number or list) meeting the specified conditions.- The proof
is restricted to be sufficiently constructive to indicate a computational method (or
algorithm) for finding the desired object. This method becomes the basis for the
program that we then extract from the proof.

The theorem is proved in a background theory, which provides the properties of
the data objects as well as the constructs available in the target programming lan-
guage. Programs constructed in this way are guaranteed to meet their specifications:
the derivation constitutes a formal verification of the program. The structure of
the proof is reflected in the structure of the corresponding extracted program. In
particular. case analysis in the proof produces a conditional test in the program;
mathematical induction in tile proof produces a recursive call in the program; and
the use of subsidiary theorems, or lemmas, in the proof produces a procedure, or
subprogram, of the extracted program.

We had difficulty finding an existing theorem-proving system capable of carrying
out the proofs of the theorems required. The Boyer-Moore theorem prover [BM79].
for example, does not deal with full quantification (universal and existential) in the
theorem to be proved; this is a serious obstacle to us because our synthesis theorems
always have both quantifiers. The Argonne theorem prover [BLMOS6], on the other
hand, does not deal with mathematical induction, which is important to us for intro-
ducing recursive calls. Nuprl [Co8G] applies to a purely constructive logic: we deal
with a. classical logic restricted only enough to allow us to extract programs from
proofs.

1.2 Deductive Tableaux

We have dev eloped a theorem-proving framework particularly well suited to the pro-
grain synthesis a~plication. !n this framework, we manipulate a dthIuctir labltau
of as,rtionus and yool,,. declarative sentences each associated with a term, called its
outplut e7r.1. \While the assertions and goals of the tableau are all that we need for a
pure theorem-proving task, the output entries are required for extracting a prograi
from a proof.

The deduction rules of the framework introduce new assertions and goals with

associated output entries, without changing the meaning of the tableau. These rules
incorporate some of the most prominent theorem-proving techniques, including (non-
clausal) resolution. mathematical induction, and term rewriting.

1.3 Powerful Deduction Rules

In our design of the deductive-tableau system, we have emphasized the development
of powerful deduction rules, which may achieve in a single step what would require
many smaller steps in a conventional formal system. Our deduction steps resemble
the intuitive steps in an informal argument. Our proofs are considerably shorter than
conventional formal proofs,. and the search space is correspondingly contracted.

Part of this effort is to incorporate properties of the background theory into the de-
duction rules., rather than representing them declaratively as assertions. Certain prop-
erties, when expressed declaratively, tend to spawn numerous logical consequences
that, while sound. have little bearing on the problem at hand. We prefer to incor-
porate such prol)erties into the deduction rules, so they may be invoked only when
appropriate.

A special unification algorithm is used by several deduction rules, to incorpo-
rate equational properties (see Siekmann [SiS9j) and sort properties (see Meseguer.
(;oguen, and Srnolka [MGS]). Properties of ordering relations, such as transitivity and
nionotonicity. are built into our own special relation rules [MW86]. Other properties
may be built into existing deduction rules using theory attachments, as in Stickel's
[StS5] theory resolution rule.

Within the deductive-tableau framework, we and our associates have worked out

the derivations of many programs in numerical [MV87a] and list-processing ([Tr891,
[Na89]) domains. We have at times derived programs we would bHvc been unlikely
to discover by conventional methods. Most of this work has been done by hand,
to test the adequacy of our deductive system. In the past year, a good deal of our
effort (with the help of some of our colleagues and students) has been devoted to tile
implementation of the method. Our first. implementation has been interactive.

2

1.4 Interactive Implementation

The user of our system provides a specification of the desired program and any prop-
erties of the background theory that are not already familiar to the system. Ie or
she must choose among a selection of legal alternatives presented by the system on
a screen. The system displays the consequences of the user's choice and presents a
further selection of alternatives. When the proof is complete, the final program is
extracted and may be used as a subprogram in the derivation of future programs.

Although poor choices on the part of the user may postpone the derivation of
the final program, it can never cause an erroneous program to be constructed. The
svstem can only produce programs that meet the user's specifications.

The system has been used for both research and educational purposes.

1.5 Applicative vs. Imperative Programs

The deductive-tableau framework was originally introduced for the synthesis of ap-
picliz programs, which return an output but do not produce any side effects. The
major emphasis of the ONR project has been the extension of the deductive approach
to the synthesis of imperativc programs, which may alter data structures and produce
other side effects as part of their intended behavior. This extension has then been
applied to the related problem of planning. We shall first describe how the deductive
approach has been extended to imperative programs; we then describe the planning
application.

1.6 The Trouble with Situatioral Logic

kVe first attempted to use a situalional logic, a theory in which the situation, a
state of the computation, is an object that may be treated in the same way as the
data objects of an applicative program. Situational logic was proposed by McCarthy
[Mc6S]; a variant was used by Green et al [Gr69]. In constructing an applicative
program, we proved the existence of a suitable output, data object; in cr f.tructing an
imperative program, we first attempted to prove instead the existe',,:e of a suitable
final state. In other words, the state was treated as just another daa object that the
program could manipulate. Operations had as arguments several data objects and a
state. For example, square(x, s) might denote the state that results when x was set
to x 2 in state s, and positivc(x, s) might test whether a" i' rositive in state s.

This representation seemed to work in the synth(is of straight-line imperative
programs (with no conditional tests), but it was fou,,l to break down in the synthesis
of conditional imperative programs. In an applictive program, it is quite possible to
apply two different operations to the same data object: for examjple, we clai compute

3

both a + I and a - 1. But in aii imperative program. we cannot apply two opera-

tions iII the same state. For example. once wh have set Xr to r in state s., we have

destroyed state s; we can no longer teOt whether x was positive in state s. Unfor-
tunatety, prograns constructed I)" -, naive application of situational logic do apply

many operations in the sam, ltate- the expressions ,quarC(x.,s) and positiv((x,s)
may both occur in the -ine program. This is possible because, in this approach,
states such as ,s occur explicitly in the program we extract.

1.7 Fluent Theory

!n circuimvent ing this problem, we have been led to devise fluent theory, a situational
logic in which a class of operations. called fluents, are explicit objects. Let us first
be more precise about fluent theory: later, we shall show why this circumvents the

problen with conventional situational logic.

Fluents are defined only in terms of what they do. Executing a fluent e in state
s returns a data object s : c and produces a new state s e.

In specifying an imperative program, we formulate a relation

Q[d,, so , d . sf]

between the input object (1,, tile initial state so, the output object ds, and the final

state Sf. To construct a program to meet this specification, we do not merely prove

the existence of an output object and final state satisfying the specified conditions.

We prove the existence of a fluent c such that executing e in the initial state s,
will return an output, object s, : c and produce a final state so e e satisfying those

conditions. In other words. we prove the theorem

The proof is again restricted to be sufficiently constructive to indicate a method for
finding the desired fluent (, and that method becomes the basis for the program to

compute e, which we extract from the proof.

In this approach, the data object do is regarded as an input, to the extracted
program, but the initial state so is not. States do not occur explicitly in the program

at, all; the same fluent is supposed to work correctly in any initial state. For this

reason, the program never performs two operations in the same state.

The same deductive-tableau framework we have used to derive applicative pro-
grais may now be applied to derive imperative programs, provided fluent theory is
part of the background theory. We have applied this approach to the derivation of

several imperative list-processing programs [MW87b], such as imperative list concate-

nation and reversal, that alter the pointer structure of their arguments in computing
the desired results.

i I I4

1.8 Planning and Database Applications

The close analogy between planning and imperative program syiithesis has long been
recognized. W\e may, regard the world as a rather large data structure, and the actions
in a plan as the operations of an imperative program. Constructinga plan to achieve
a given goal may then be treated as a prob lem of constructing a program to meet a
given specification.

Exploiting this analogy, we have applied our fluent theory to the solution of robotic
and commonsense planning problems [M\VSc]. This approach gives us clean solu-
tioris to some somewhat troublesome problems.

Most work in planning has been devoted t.o the construction of straight-line plans;
it has avoided the formation of conditional tests and of any sort of repetition or
looping. These constructs give the planning system a mechanism for dealing with
uncertainty. Although it is generally acknowledged that conditionals and loops are
important, there is a tendency for researchers to postpone considering them.

In programming (as well as planning) applications, there is little justification for
concentrating on straight-line programs. We chose a deductive approach over a purely
transformational approach largely because of the relative simplicity of the deductive
methods for conditional formation (via case analysis) and recursive loop formation
(via mathematical induction). These methods carry over directly into the planning
domain.

Some problems that are resolved simply in a deductive framework involve taking
into account the action of the agent. Certain actions (e.g., getting a roadmap) must
be inserted into a plan simply for the purpose of acquiring information. \We have
found that the same notion of "sufficient constructiveness" we use to ensure that the
programs we extract from proofs are executable may also be used to ensure that the
agent has sufficient knowledge to follow the extracted plan.

Another application we have investigated is database management. A database
may be regarded as a sort of world model. The problem of updating a world model
while maintaining given constraints is a typical planning problem and has been ap-
proached (in collaboration with X. Qian, a Ph.D. student specializing in databases)
as a problem of deduction in fluent theory [QW88], [QiS9]. A system for the synthe-
sis of database transactions, based on the system described in Section 1..5. has been

Implemented.

1.9 The Frame Problem

A well-known obstacle to the application of situational logics to the solution of pro)-
lems in planning and imperative program synthesis is the framc probhCm., the odious
necessity to state explicitly in our theory whenever a given operation can have no

effect oil a given relation. This places a heavy burden on1 the person specifying the
background theory, because, particularly in planning applicat ions, most operations
may be regarded as independent of most relations. Furthermore. the numerous frame
axiom, that express these properties may overload the strategic capacities of the
system, because they have numerous irrelevant consequences.

There is an active body of research on nonmonotonic r(asoning [Gi87], in which
on(acknowledges that the background theory and its deduction rules are only an
approximation to the truth, and introduces the possibility of retracting deductions
when discrepancies arise. In such a system, it is possible to state an overly general
frame axiom, such as that no operation has any effect on any relation. Some con-
sequences of this axiom will be false, but, may he retracted when they are found to

contradict other axioms or conclusions.

The field of nonmonotonic reasoning is still in flux., and there is no general agree-
ment as to how to proceed. Although we benefit from the results of this research, we
have not addressed these problems ourselves. We include a correct description of the
world., including the frame axioms, in our background theory.

The second aspect of the frame problem, as we have remarked, is the strategic
burden of dealing with the numerous consequences of the frame axioms. We have
found it advantageous to build these frame properties into the deduction rules, rather
than expressing them declaratively as assertions, just as we have done for transitivity
and other troublesome properties. One may incorporate these properties into the
special relation rules [MW86] or as theory attachments to other rules [St85]. The
upshot is that frame properties will not be invoked unless they are appropriate.

1.10 The Logical Basis for Computer Programming

A good deal of our time has been devoted to the completion of the second (and
final) volume of our book (with Zohar Manna), The Logical Basis for Computer Pro-
.qranmng. This volume provides an elementary exposition of the deductive-tableau
framework and its application. It also provides an exceptionally clear introduction
to irany of the topics basic to the understanding of automated deduction, including
well-founded induction, skolemization. and unification. The book is published by
Addison-Weslev; Volume II appeared in late 1989.

1.11 Current Status and Publications

With the help of our ONR support, we have accomplished the following:

e Development of a modified situational logic, called fluent theory, for the deriva-
tion of imperative programs

6

" Adaptation of fluent theory to planning

" Extension of the deductive-tableau framework to produce fluent theory proofs
" Implementation of an interactive system to prove theorems and derive programs

within the deductive-tableau framework

" Application of fluent theory to the derivation of database transaction programs

" Completion of Volume II of The Logical Basis for Compuier Programs

" Preliminary design of a semiautomatic system for planning, imperative program
synthesis, and theorem proving

2 Publications

All of our technical reports have been published in journals or conference proceed-
ings. A paper on fluent theory and its application to imperative program svnthe-
sis, "The Deductive Synthesis of Imperative LISP Programs," was presented at the
1987 National Conference on Artificial Intelligence, and appeared in the proceedings
[M\V87b]. A description of the application of fluent theory to planning problems.
"How to Clear a Block: A Theory of Plans," was presented (in parts) at various
workshops and appears in the Journal of Automated Reasoning [MWS7c].

A description of the application of fluent theory to database management [QWSS],
"A Transaction Logic for Database Specification," appears in the proceedings of SIG-
MOD'88. The work is described more fully in the Stanford University Ph.D. Thesis of
Xiaolei Qian [Qi89]. A response [WaS7] to Drew McDermott's critique on deductive
methods, "The Bomb in the Toilet," appears in Computational IntelligencC (1987). A
basic introduction to the deductive-tableau method and a typical example of its ap-
plication, "The Origin of a Binary-Search Paradigm," appears in the journal Science
of Computer Programming [MW87a]. The Logical Basis for Computer Programming,
Volume II: Deductive Systems, was published by Addison-Wesley [MW90].

7

3 References

[BLMO86) R. Butler, E. Lusk, W. McCune and R. Overbeek, Paths to -tigh-Per-
formance Theoren-Proving, 8th interzational Confercnce on An/omald De-
duction, pp. 588-597, Springer-Verlag, 1986.

[BM79] R.S. Bover and J S. Moore, A Computational Logic, Academic Press, 1979.

[Bu88] A. Bundy, The Use of Explicit Plans to Guide Inductive Proofs, 9th I7-
ternational Conference on Automated Deduction, pp. 111-120, Springer-Verlag,
1988.

[Co86] R.L. Constable et al., Implementing Mathematics with the Nuprl Proof Dt-
velopment System, Prentice-Hall, 1986.

[Gi87] M.L. Ginsburg, editor, Readings in Non-Monotonic Reasoning, Morgan I,\auf-
mann, 1987.

[Gr69] C.C. Green, Application of Theorem Proving to Problem Solving, Interna-
tional Joitnt Conference on Artificial Intelligence, pp. 219-239, 1969.

[MW80] Z. Manna and R. Waldinger, A Deductive Approach to Program Syn-

thesis. Science of Computer Programming, 2(1):90-121, 1980; reprinted in C.
Rich and R.C. Waters, editors, Readings in Artificial Intelligence and Software
Engineering, pp. 3-34, Morgan Kaufmann, 1986.

[MW86] Z. Manna and R. Waldinger, Special Relations in Automated Deduction,
Journal of the ACM, 33(1):1-59, 1986.

[MW87a] Z. Manna and R. Waldinger, The Origin of a Binary-Search Paradigm,
Science of Computer Programming, 9:37-83, 1987.

[MW87b] Z. Manna and R. Waldinger, The Deductive Synthesis of Imperative
LISP Programs, Sixth National Conference on Artificial Intelligence, pp. 155-

160. Morgan Kaufmann, 1987.

[MW87c] Z. Manna and R. Waldinger, How to Clear a Block: A Theory of Plans,
Journal of Automated Reasoning, 3:343-377, 1987.

[14W90 I Z. Manna and R. Waldinger, The Logical Basis for Gomputer Program-

ming, Addison-Wesley, 1990.

[Mc68] J. McCarthy, Situations, Actions, and Causal Laws, in M. Minsky, editor,
Semantic Information Processing, pp. 410-417, MIT Press, 1968.

[MGS] J. Meseguer, .J. Goguen, and G. Smolka, Order-Sorted Unification, to appear
in the Journal of Symbolic Computation.

C,
0

[Na89] 1). Nardi, Formnal Synthesis of a Vnification Algorithm by the DeductiVe-
Tlableau MNltho(1. to appear in the Journal of Logic Programming.

[Qi89 3 . Qiari, A Deductive Ap~roach to Database Transactions, Ph.D. Disserta-
tion, Department of Computer Science, Stanford University, 19S9.

[QW88 IN. Qian and R. Vvaldinger, A Transaction Logric for Database Specification,
Special Interest Group on Afanageiclnt of Data '88, pp. 243-250, ACMN, 1988.

[Si89] Jil. Siekmann, Unification Theory, Journal of Symnbolic Computation, 7(3/4),
pp.2O7 - 27 4 , 1989.

[St85] M.E. Stickel, Automated Deduction by Theory Resolution, Journal of Auto-
mated Reasoning, 1(4):333-335, 1985.

[Tr89 I .J.C. Traugott, Deductive Synthesis of Sorting Programs, Journal of Sy-mbolic

Computation, 7(6):,533-572, 19S9.

[Wa77]R.J. Waldinger, Achieving Several Goals Simultaneously, in E.W. Elcock

andl D. Michie, editors, Machine Intelligence 8: Machine Representations of

Knowledge, pp. 94-136, Ellis Horwood, 1977.

[Wa87] R. Waldinger, The Bomb in the Toilet, Computational Intelligence, 3(3):220--
221, 1987.

9

